
Properate: Property Rating Using A Novel Instant Energy
Modeling Approach

Arman Mottaghi, Alex Lavoie, Artur Akhmetgareev, Noura Seifelnasr

Abstract
For mass-scale home energy upgrades, we present 4 criteria that no existing Building Energy Modeling
tool provides simultaneously – Reproducibility, Expandability, Auditability, and Lightness. Reviewing the
limitations of the common “White Box” (e.g. HOT2000, EnergyPlus) and “Black Box” (e.g. Machine
Learning, AI) energy modeling tools, our novel “Grey Box'' energy modeler, RBEST, excels in delivering
on all 4 criteria. We then showcase RBEST within the software suite, Properate, to demonstrate how it
enables Virtual and Remote Energy Rating when conventional On-Site Rating may not be feasible. 6,917
buildings in the Climate Zones 4 through 7 of North America are assessed with Properate, then their
accuracy is compared to On-Site Rating. The results show that while Properate introduces new flexibility
and scalability in the process, it maintains an average weighted accuracy of 92% compared to On-Site
Rating. The results can pave the path for community-scale home deep energy retrofits across Canada.

Background
With increasing declarations of climate
emergency across the globe, communities and
governments are looking for ways to understand
their building stock and plan energy upgrades
for them. Out of all building types, low-rise
residential buildings have unique challenges in
this regard; each building is unique and too
small for programs that can operate at-scale.
These challenges need to be addressed since the
cumulative environmental impact of these
buildings has been the largest amongst any
building type [1][2].

The challenges are present from the “Energy
Rating” (or “Energy Audits”) stage — the very
first step of a building energy upgrade. As such,
many governments are looking into ways of
scaling Energy Rating for homes [3].

An Energy Rating has been historically done by
a visit to the building. The “On-Site Rating” can
create a comprehensive image of one building;

albeit, collecting accurate information from a
home is time-consuming.

This creates a tradeoff: if an Energy Rater
increases the precision of the data they collect
from each home, they will end up assessing
fewer homes in a given timeframe. Since time is
the major factor in Energy Rating costs, each
home ends up paying more as well.

The Energy Performance Certificates (EPCs) in
the EU are an example of this tradeoff. Each EU
country can set their own EPC procedure.
Depending on the economical and
environmental dynamics in each country, the
method of EPC creation can widely vary. Most
countries require a visit to the home for issuing
the EPC, but not all. The data collection fidelity
and the tools for processing the EPC is also up
to the individual member states, creating wide
variance in the costs [4].

In Canada, the Rating is done under the
EnerGuide For Homes program. The data



collection under this program requires On-Site
data collection. The calculation for the Rating is
typically done using the Canadian energy
modeling software HOT2000.

This comprehensive process is one of the
strengths of the EnerGuide program. It means
that any rating generated by the program is
backed by an energy simulation, making it
auditable.

Amid substantial industry scale-up efforts, this
program has managed to have approximately
65,000 EnerGuide Ratings in 2021, which is
only 1% of the applicable build-stock in Canada.
We believe that for mass-scale home energy
upgrades, every home needs to have an Energy
Rating that continuously gets updated.

For this purpose, we present improvements for
both Energy Rating approaches and technology.

Table 1: Summary of different Energy Rating
Approaches

Energy Rating Approaches
Relying only on On-Site rating makes it
extremely difficult to scale-up Energy Ratings.
Prior to the site visit, the Energy Rater does not
have usable data from the home, so the
economics and circumstances define which
buildings get On-Site assessments. Added to the

equity considerations, such an approach is
inefficient.

To resolve the above limitations, our process
adds two other Rating options:

1. Virtual Rating (or “Virtual Audits”) does not
require engagement of homeowners. It can be
performed using available public data at the
scale of neighbourhoods. The results of a Virtual
Rating (VR) may not have the highest accuracy;
however, such results may be used to direct
efforts towards the homes that require the most
attention.

2. Remote Rating (or “Remote Audits”)
requires the engagement of the homeowner.
Remote Ratings (RR) can achieve higher
accuracy than a Virtual Rating, with
significantly less barriers compared to an
On-Site Rating. Remote Ratings can be done in
a DIY (Do It Yourself) fashion or through a
professional. The process may involve a
questionnaire, or some pictures of the home.

Aside from the above tooling needs, the
connection between different Rating approaches
is presently lacking in the industry. Remote
Ratings can be done faster and more effectively
with data from a Virtual Rating.

In the same way, significant speed-up is possible
if On-Site Rating is done on the basis of the data
available through Virtual/Remote Rating,
eliminating many variables.

In the industry, sometimes the scope of “Rating”
(and “Labeling”) is considered only for
generating a simplistic overview (e.g. an A-E
scale of efficiency). Meanwhile, the
community-level insights are extracted through
“building stock modeling”; Creating a
disconnected system where top-down and
bottom-up insights do not flow.



With connected Rating processes, a community
may commission a Virtual Rating of all its
homes and learn that homes built within specific
years have the highest retrofit potential. The
community may then target those homes with a
Remote Rating program, through which
homeowners can get qualified for incentives.
Finally, an On-Site assessment, verifies the
potential and quantifies the retrofit benefits.

For such Rating processes to be as successful as
an On-Site assessment, the methodology and the
scope of the Virtual and Remote Rating tools
must be clear. For this reason, we believe that
the On-Site level of comprehensiveness must
apply to Remote and Virtual Rating.

Technological Requirements
To deliver Energy Rating, we have identified 4
key requirements that a Building Energy
Modeling (BEM) software must deliver:

3. Reproducibility: One set of input conditions
must always output the same results. This
requirement is challenging to meet for models
that rely on random sampling.

4. Expandability: The energy modeling tool
must be able to handle “unseen” buildings. This
is particularly important for low-income housing
where not many buildings have been previously
assessed due to the cost of On-Site Ratings. If
past On-Site Rating data is being used as the
basis for energy modeling, it may not represent
low-income households well.

2. Auditability: The model outputs must be
validatable at the component-level using a
well-studied & common energy modeling tool,
conforming to a standard such as ASHRAE 140.
This requirement not only creates transparency
in validating a result, but also can accelerate
further On-Site Rating.

1. Lightness: The energy simulation workflow
must be computationally light enough to be used
for millions of homes. Constant introduction of
new technologies and data means that
comprehensive digital twinning of a community
requires these simulations to run periodically on
generally accessible computer hardware.

The above 4 constitute the REAL requirements.
In the next section we provide examples of how
these requirements may be reviewed.

Technology review
In many fields of science, simulation methods
are classified within a “White Box” to “Black
Box” spectrum [5][6]; the differentiating factor
being the ways the simulation methods leverage
physics & statistics. In the field of Building
Science the same classification is evident.

White Box Modeling (Physics-Based)
The current industry tooling for building energy
modeling heavily favours “White Box” building
energy models.

The name, White Box, suggests that the
modeling approach is reliant on mathematical
equations, i.e. an observer can inspect the model
and understand how it works.

The transparency however, comes at a
computational cost. Since all building
components are interconnected, there needs to
be iterative computation to successfully simulate
a building. Figure 1 displays a conceptual
diagram of such models.

EnergyPlus [7] is one of such White Box
models. One component of EnergyPlus load
balancing calculations is air flow. The air flow
between different building zones (analogous to
m in figure 1) are calculated iteratively “for each



zone in an air loop until the convergence
criterion is satisfied”.

This convergence through iteration is done for
each timestep (n in figure 1) of the simulation. A
moderate number of timesteps may be over
50,000 in one year (every 10 minutes).

Such nested iterations (zones within timestep)
create rising computation Time Complexity.

Multiple nested iterations may be present in one
model for different purposes, adding to the
computation required to reach convergence.

While the computational burden may not be
significant for one building simulation, it
becomes a challenge for upgrade planning and
Remote Rating at the community level.

Figure 1: White Box Modeling

On our benchmarked case using HOT2000, a 4th
generation Intel processor took 7 seconds to
fully simulate a home. For a community of
50,000 homes, a single simulation run on such a
computer will take 4 days to complete. Many
rounds of simulation as well as iterative analysis
of potential upgrades are necessary for a
comprehensive community study, increasing the
demand to millions of simulations which will
require significant computation time. In short,
the White Box models lack Lightness.

To resolve the computation limitation of
White-Box models without changing the
technology, researchers have done either of the
following:

1. Scale the computation: In one example,
Argonne National Laboratory in the US used a
supercomputer to perform Energy Rating for
178,000 buildings [8]. Same can be done with
on-demand cloud computing instances, which

have become increasingly available over the past
decade.

However,  even at that scale, Energy Rating for
an entire country would not be possible at a
reasonable cost. The results may also not be
instantly available.

2. Simplify the use-case: When computation is
restricted, commonly, communities opt to make
“archetypes” of the building stock, and study the
archetype. Each archetype is meant to represent
one common type of housing. By only
performing analysis on the archetype, the
researchers hope to make discoveries that are
expandable to all the buildings the archetype is
meant to represent.

Defining the archetypes may be considered part
art part science by the industry professionals.
The number and the features of the archetypes
are defined according to the statistical analysis
of building features, the project scope/budget,



and the purpose of the analysis.

The issue with archetype studies is that they are
“one size fits all” by definition, thus not suitable
for Remote Rating.

3. Relate to previously computed results:
When there is a non-exhaustive number of
ratings available from the previous two methods,
researchers may try to use the available results
to guess the rating of unrated buildings. One
way to do so is by finding the “nearest
neighbour” of an unrated building. If there is a
rated building  that’s sufficiently similar to the
unrated building, the rating may be reusable for
the unrated building. Examples of such an
approach can be found in [9][10].

Inferring the relationship between the inputs and
the outputs using statistics is a more dynamic
way of learning from the rated building data.
[11] calls these “surrogate models” (or
“meta-models”) in general and provides an
overview. These models can vary greatly in their
complexity. In general, these models tune
themselves using an available set of “training
data”.

Particular to the residential Energy Rating,
Surrogate models share some limitations with
the White Box models; Surrogate models must
become more complex as the fidelity increases.
They face the so-called “curse of dimensions”.
In short, if they want to include more inputs
from a building, they must have access to
exponentially more training data.

Since our focus is on full-featured building
energy models, below we discuss the
comprehensive types of these Surrogates, the
Black-Box models.

Black-Box Modeling (Statistics-Based)
One alternative to directly using the “White
Box” models, are the “Black Box” models
which use statistics. The advancement of data
science and machine learning has prompted
many research and development teams to
attempt and bring such new technologies within
the building science domain [12].

The results are considerable simplification of the
building energy modeling architecture, boosting
Lightness. The architecture simplification is
apparent in figure 2

Figure 2: Black Box Modeling

This simplification, however, may come at a
cost. While Black-Box models can be powerful
tools for research, they often lack Auditability,
Reproducibility, & Expandability for Remote
Rating.

To study these REAL requirements we provide a
simplified example. Let us assume a researcher
decides on using polynomial regression to infer
the EnerGuide score of a home based on the

home’s heated area. A regression model is a
Black Box modeling approach.

The most apparent issue with this analysis as the
name Black Box suggests is the opaqueness of
how the model finds its results . Let us assume
that the model is . Such a0. 035𝑥2 + 0. 2𝑥 − 6. 3
formula does not provide any way of reasoning
about the results; therefore, it lacks Auditability.
Actual Black Box models often employ complex
neural networks and other Machine Learning



tools which further restrict what can be learned
from them.

Moreover, as the rudimentary figure 3 example
shows, the model also fails Expandability.
Adding one new data point D between B & C
changes the best regression of the graph,
changing the outputs of the model.

Any Floor Area query bigger than C, despite not
having any new evidence, has drastically
changed. This “best fit” nature of the Black Box
models makes them rather unpredictable.

We acknowledge that the provided case may be
argued away as an example of overfitting on a
small data sample; however, the example is valid
as a simplified case of a critical issue with the
Black Box models. In reality, the Black Box
energy models have far more dimensions than
the two in the example. As such, the actual
models deal with sparse data across those
dimensions where new data can substantially
change the model’s behaviour.

Figure 3: Rudimentary example of how new data impacts Black Box models.
Some Black Box models also fail
Reproducibility. Examples are Monte Carlo
based simulations [13]; or in general, any model
that has random sampling or noise as a part of its
activation.

Finally, the reliance of the Black Box models on
past data means they are not flexible to changes
in data collection or simulation methodology.

Let’s consider the example of EnerGuide. Over
the recent years updates to the HOT2000
software were issued multiple times, often with
changes that impacted simulation results. In one
case, the climate data that powers the
simulations was overhauled. Such changes can

reduce the usability of the older versions’ data
for a Black Box model.

This limitation also makes Black Box models
unsuitable for Resilience analysis, where the
climate of the future is of concern.

Grey-Box Modeling (Hybrid)
Grey-Box models are commonly referred to as
the hybrid of the above approaches. The fashion
in which the hybrid model is made can vary.

We present our version of a Grey-Box model,
the Rapid Building Energy Simulation Tool
(RBEST).



Figure 4: Properate’s RBEST (Grey Box) Model Architecture

The design philosophy behind RBEST is mixing
the advantages of the White Box modeling with
the acceleration made possible by Black Box
modeling. Hence, RBEST starts the process by
making an energy model in a very similar
fashion to a White Box model. RBEST parses
the provided building components and prepares
them for a simulation environment.

From that point, RBEST employs Black Box
modeling to avoid the need for the

computationally heavy parts of a White Box
approach.

The goal of the Black Box module is to only
produce the parameters that a White Box model
would have computed through iterative
calculations. That purpose significantly
simplifies the Black Box model requirements. It
also makes it trivial to detect errors in the Black
Box model outputs.

Table 2: Feature summary of different Energy Rating Technologies

Category White Box Grey Box Black Box

REAL Requirements

Reproducibility Yes Yes Common

Expandability Yes Yes No

Auditability Yes Yes No

Lightness No Yes Yes

Other Desirable Features

Component-Level Outputs Yes Yes Uncommon

Conversion between different models To Grey &
Black Box

To White Box
& Black Box

No

Co-Simulation: Processing for multiple
simulation paradigms, in one shot No Yes Yes

Resilience Analysis: working with novel
climate models and forecasted climate data Yes Yes No



Another advantage of the Black Box module are
Co-Simulators, which offer parallelization. We
often find the need to employ multiple
residential building energy simulation
methodologies in one project; however, most
methodologies are incompatible with each other.

For example, a model used for the energy rating
of a building can be different from the model
used for sizing the mechanical equipment. In
other cases, homes that want to conform to the
Passive House standard, also like to participate
in EnerGuide incentive programs. Hence,
needing two types of simulation.

Instead of making two separate models, RBEST
uses single-shot multivariate simulation to give
multiple results at once.

Once the Black Box model returns the
computation result of one or multiple
simulations, the results are fed back into a
module resembling that of a White Box model.
This final module converts and summarizes the
inference results from the Black Box into
building component-level simulation results.
Finally, the module produces an energy label.

As Table 1 shows, this Grey Box modeling
passes all the REAL Requirements. RBEST
provides the Expandability and Auditability of a
White Box model at much faster speed.

On the benchmark computer introduced earlier,
RBEST ran 6 orders of magnitude (1,000,000
times) faster than the White Box model. The
benchmarking only involved the operation of
RBEST. In the production environment, other
components and the data transfer latency
significantly add to the overall turnaround time.

The most challenging part of developing and
validating RBEST was at the “seam” between
the modules — at the transition between White
Box and Black Box. The complex nature of the

module communication made debugging the
issues challenging.

Another byproduct of the RBEST design, is
validation after input data parsing. This design
choice was made to make the Black Box module
more robust; however, it means that when
anomalies arise in the validation step, they may
not be understandable for the users. That is
because RBEST finds the issues in what it has
parsed, not in the user inputs.

Our resolution to this limitation is an error
reporting subroutine which takes an RBEST
error and translates it into something a user can
understand and fix.

Properate
Properate is a property rating software suite
which orchestrates user input collection,
supplementary data compiling, building energy
simulation, and retrofit planning.

Currently, Properate suite has the following
functionality:

1. Maps: Shows the Energy Rating of every
home in a neighborhood. If Remote Rating or
On-Site Rating data is not available for a home,
Virtual Rating results are displayed for that
home.

2. Wizard: A questionnaire interface for Remote
Rating. It can be operated by homeowners in a
DIY fashion, or by professionals in a concierge
fashion.

3. Studio: Made for professionals for On-Site or
Remote Rating. Studio’s interface allows for
complete data collection from a building and the
results provided have the highest fidelity.

4. API: Programmatic interfacing with the
RBEST and estimators such as costing and GHG
for third-parties.



RBEST powers the core instant building energy
simulation functionality of Properate, while
other technologies prepare the inputs and
outputs. The following section provides a
use-case of how Properate orchestrates all these
technologies in the context of community-level
energy labeling.

Case-Study
We put Properate to test for Remote Rating.
White-Box modeling based on an On-Site
Energy Rating is used as the “ground-truth” for
the testing.

Methodology
We employed a modified blind-study
methodology in which we gave Properate the
following data points from 6,917 buildings.
These buildings were also assessed by an
On-Site EnerGuide evaluation. The On-Site
evaluation results and the data points below
were never examined by Properate prior to the
case-study:

1. Building Address: Properate can use
the address to extract properties such as
weather station data, altitude, &
surroundings (VR)

2. Satellite Imagery of the building
location (VR)

3. Property Records: Building Square
Footage, year built (VR)

4. Building Massing: number of stories
and area per floor (VR and RR)

5. Fuel types of heating, and hot water
systems (VR and RR)

6. Upgrades to the building over the past
decade (VR and RR)

The goal of the study is to see how close
Properate can simulate these unseen buildings
when compared to an On-Site Rating.

We have noted the usage of each data point for
RR (Remote Rating) and VR (Virtual Rating) in
the above list. That’s because not all data was
available for every building. This provided an
opportunity to study the effect of missing data
on Properate’s performance.

Data
The studied buildings are Detached and
Attached Single-Family Dwellings (SFDs)
located in the provinces of British Columbia and
Alberta, in Canada. The defining characteristics
of the data are as follows:

● Age: The homes were built between
1895 and 2022, encompassing roughly
130 years of construction. The data is
heavily skewed towards homes built
after 2011.

● Location: Most homes are located in
Edmonton, the Lower Mainland, and
Southern Vancouver Island. With other
buildings spread out around BC. The
data covers Climate Zones 4 to 7.

● Definition: Most buildings had at least
one missing data point. That left 1351
homes which could have a Remote
Rating done, mostly in Metro
Vancouver. The rest could only be
studied with their Virtual Rating.

● Size: The livable area of the homes
ranges from approximately 9 m2 (95 ft2)
to 1,300 m2 (14,000 ft2). Therefore, the
data covers a wide range of residential
building types from tiny homes to
mansions. Figure 5 plots a histogram.



Simulation
Before simulating all buildings, we studied a
random sample of 100 buildings from the
dataset, looking for any issues that may
adversely affect the accuracy. After flagging and
addressing the issues, we performed a Virtual
Rating of all buildings.

The subset of buildings that had all the
necessary data points were simulated once again,
this time with a Remote Rating, to measure the
improvements.

Figure 5: Histogram of Home Floor Areas

Error Definition
We measured the accuracy by comparing the
EnerGuide ratings found by On-Site Rating and
by Properate’s remote Rating. The reason we
selected this metric is its importance in Canadian
Energy Rating. The EnerGuide score is the
compound result of component-level
computation, which means it can represent the
overall energy model well. Achieving high
accuracy in EnerGuide score estimates makes it
easy to also accurately calculate other energy
model outputs, such as GHG emissions.

Utilizing ASHRAE 14 simulation calibration
accuracy measurement processes, we evaluated
the result errors at 3 levels of complexity:

1. Mean Bias Error (MBE): Measures overlap
of the On-Site Rating and Properate’s remote
Rating.

𝑀𝐵𝐸 = 1
𝑛
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2. Mean Absolute Error (MAE): In MBE,
prediction overestimates and underestimates
cancel each other out. MAE measures the
absolute difference between the Properate’s
remote Rating versus On-Site:
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3. Normalized Root Mean Square Error
(NRMSE)1: In practice, large errors matter
much more than small errors. This metric
penalizes larger errors in an absolute fashion by
squaring each error in Root Mean Square Error
(RMSE):

𝑅𝑀𝑆𝐸 =  1
𝑛

𝑖=1

𝑛

∑ (𝑦
𝑖

− 𝑦
𝑖
)

2

To put RMSE in an understandable context, we
then normalize it to get a percentage:

𝑁𝑅𝑀𝑆𝐸 =  𝑅𝑀𝑆𝐸
𝑦

where:
is the range of On-Site EnerGuide𝑦

Rating.

In the same fashion, the previous error metrics,
like MBE can be normalized as NMBE.

Accuracy Definition
As for how to define the “accuracy” of

1 Our NRMSE is analogous to ASHRAE 14’s
CV(RMSE)



Properate, we simply use the normalized errors.
We define the “Absolute Accuracy (AA)” as:

𝐴𝐴(%) =  100% − 𝑁𝑀𝐵𝐸

and the “Weighted Accuracy (WA)”, which is
meant to penalize large errors, as:

𝑊𝐴(%) =  100% − 𝑁𝑅𝑀𝑆𝐸

Analysis
The results of the simulations can be seen in
Table 2, according to the error calculation
methods introduced.

Table 2: Properate Accuracy Metrics

VR RR

(# of homes)𝑛 6,917 1,351

(rate range)𝑦 691 GJ 312 GJ

Mean Values

MBE 31 GJ 1 GJ

MAE 44 GJ 16 GJ

RMSE 61 30

Normalized Values

NMBE 4.5% 0%

NMAE 6% 4.5%

NRMSE 9% 8%

AA 94% 95.5%

WA 91% 92%

Exploring the three error measurement methods,
it is clear that Properate has managed to estimate
the EnerGuide score of most buildings with high
accuracy.

The MBE of Virtual Rating (VR) is 31. The
number being positive shows that Properate is

generally overestimating the homes’ energy
score. While the overlap of Properate and
On-Site Rating is high, there is a gap of 30GJ.

Remote Rating practically eliminates the MBE.
Properate’s predictions and the On-Site Rating
have the perfect data overlap.

That being said, reviewing the other error
measurements, Virtual Rating managed to
maintain an accuracy of over 90% for both AA
and WA despite its limited data points.

It must be noted that in this case, all 6 data
points for each building given to Properate (as
outlined in the Methodology section) were
collected for Rating. This is the ideal process for
Virtual Rating data collection.

In many other circumstances, Virtual Rating data
may come from local government planning
departments, tax authorities, or real estate
databases. Then the data needs to be repurposed
for Remote Rating, potentially impacting Virtual
Rating’s accuracy. In that scenario, Remote
Rating data collection gains another important
purpose. Some of the data that Properate collects
for Remote Rating is used to check the
sensibility of the Virtual Rating data.

With Remote Rating, Properate’s accuracy
increases further above 90%. The MAE of
Properate’s Remote Rating is 16 GJ, meaning
that on average a 16 GJ difference is expected
between Properate and an On-Site Rating. This
is a significant improvement from the Virtual
Rating’s 44GJ. Looking at the normalized values
however, the difference is not as pronounced.
That is because, as mentioned, much of the
Remote Rating data is in Metro Vancouver.
Overall, the Remote Rated 1,351 homes have a
narrower EnerGuide Score range.

Figure 6, provides a more granular level of error
comparison, making the benefits of Remote
Rating more understandable.



Figure 6: histogram of Properate’s estimation accuracy for Virtual Rating (VR) & Remote Rating (RR)

Remote Rating’s error distribution is more
similar to a normal distribution, with a single
peak that is aligned with the 0 error point (the
dotted line) on the graph. Virtual Rating’s error
distribution is not as defined nor is it aligned
with the 0 error point. MBE had already shown
this difference between Remote Rating and
Virtual Rating.

It also can be seen in Figure 6 that there is, at
times, a wide gap in Properate’s estimation
accuracy, especially for Virtual Rating.  The
larger errors are in part because of outliers.

Outliers
While the data collection process was for the
purpose of Rating, there are still inaccuracies in
the data. Some of such inaccuracies are evident
when looking for outliers.

For example, 8 data points had a 3 digit number
as their year built, e,g. 197 instead of 1974. The
year built errors were easy to identify and
remedy; however, there are other inaccuracies
that we could find only upon individual building
review. The most common types of these
inaccuracies were:

1. Rating being from the laneway home or part
of a property, while Properate was given the

main building address.

2. There have been re-development/renovations
after some of the data points given to Properate.

3. The building areas were misidentified. A
common example is misidentifying a first floor
as a basement.

Data Skew
As we pointed out earlier, one of the data
imbalances is a skew in the “year built'' of the
homes. To study the effects of data skew we
sliced the data in such a way that it separates the
overrepresented data points from the rest of the
data.

Figure 7 compares the overrepresented slice of
the data with the overall. In both cases, the error
distribution is similar, except that the
overrepresented data has a slightly smaller error.

The slight difference can be explained by
highlighting that the overrepresentation comes
from the homes being built recently. Newer
homes are built under stricter and more elaborate
building codes. Furthermore, there is less chance
of interim modifications in the building, these
factors have a positive effect on Properate’s
accuracy.



Figure 7: Error Rate Comparison Of
Overrepresented Data with

With the difference being explainable, we don’t
find an adverse imprint from the skew in the
results.

Representativeness
The year built and region of the data available to
us were not homogenic. So the results may not
be broadly representative of the built stock in the
provinces of BC and AB. That said, establishing
representativeness appears to be highly likely
with more data from underrepresented regions
and years.

Barring the age and region imbalances, using
Confidence Interval statistical analysis shows
that for the roughly 2 million homes in BC and
AB, given the sample size of the data in this
study there is a 1.55% margin of error with a
confidence level of 99%.

Next Steps
To our knowledge, this is the largest study of its
kind for Remote Rating. The learnings from this
study also reveal the following areas for further
research:

1. Acquire more Rating data to make the results
broadly representative across Canada.

2. Study the building digital twins with other
co-simulators beyond EnerGuide. Co-simulation

can substantially facilitate access to more
specialized energy modeling activities such as
mechanical system sizing and climate
adaptation.

3. Perform sensitivity analysis on inputs to
understand how inaccurate inputs can lead to
outliers in accuracy results.

Conclusion
We used Properate to remotely perform Energy
Rating on 6,917 buildings in the Climate Zone 4
through 7 of North America then compared the
results with On-Site Rating from those
buildings.

For 1,351 of the buildings that had 6
generally-available data points, the results show
an Absolute Accuracy of 95.5% and a Weighted
Accuracy of 92%.

When the number of data points given to
Properate were reduced to what was available
for all 6,917 buildings, the result was Absolute
Accuracy of 94% and a Weighted Accuracy 91%
for all buildings. The decrease in accuracy being
modest, shows the flexibility of Properate when
dealing with missing data.

Given the limitations of the source data, the
results may not be generalizable to all homes in
the studied Climate Zones; however, our
analysis of the data imbalances and features
indicate high confidence in the statistical
significance of the results for the studied
building types.
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